高二数学《不等式的证明》单元test题

time:2020-09-11

高二数学《不等式的证明》单元test题

  一、choice题(每小题6郑42分)

  1.设0

  A.4ab B.2(a2+b2)

  C.(a+b)2 D.(a-b)2

  答案:C

  解析:令x=cos2θ,θ∈(0, ),则 =a2sec2θ+b2csc2θ=a2+b2+a2tan2θ+b2cot2θ≥a2+b2+2ab=(a+b)2.

  2.若a、b∈R,a2+b2=10,则a-b的取值范围是( )

  A.[-2 ,2 ] B.[-2 ,2 ]

  C.[- , ] D.[0, ]

  答案:A

  解析:设a= cosθ,b= sinθ,则a-b= (cosθ-sinθ)=2 cos(θ+ )∈[?-2 ,2 ].

  3.已知a∈R+,则下列各式中成立的是( )

  A.cos2θlga+sin2θlgblg(a+b)

  C. =a+b D. >a+b

  答案:A

  解析:cos2θlga+sin2θlgb

  4.设函数f(x)=ax+b(0≤x≤1),则a+2b>0是f(x)>0stay[0,1]上恒成立的( )

  A.充分而不必要条件 B.必要而不充分条件

  C.充要条件 D.既不充分也不必要条件

  答案:B

  解析:a+2b>0 a +b>0 f( )>0,不能推出f(x)>0,x∈[0,1];反之,f(x)>0,x∈[0,1] f( )>0 a+2b>0.

  5.(2010重庆万州区一模,7)已知函数y=f(x)满足:①y=f(x+1)是偶函数;②stay[1,+∞)上为增函数.若x1<0,x2>0,且x1+x2<-2,则f(-x1)与f(-x2)的'大小关系是( )

  A.f(-x1)>f(-x2) B.f(-x1)

  C.f(-x1)=f(-x2) D.f(-x1)与f(-x2)的大小关系不能确定

  答案:A

  解析:y=f(x+1)是偶函数f(x+1)=f(-x+1)f(x+2)=f(-x).

  又x1+x2<-2,-x1>2+x2>2,

  故f(-x1)>f(2+x2)=f(-x2).

  6.(2010湖北十一校大联考,9)定义stayR上的偶函数y=f(x)满足f(x+2)=-f(x)对All实数x都成立,且stay[-2,0]上单调递增,a=f( ),b=f( ),c=f( 8),则下列成立的是( )

  A.a>b>c B.b>c>a C.b>a>c D.c>a>b

  答案:B

  解析:由f(x+2)=-f(x)有f(x+4)=f(x),

  ∴T=4,而f(x)stayR上为偶函数又stay[-2,0]上单调递增,所以f(x)stay[0,2]上单调递减.

  b=f( )=f(- )=f( ),c=f( 8)=f(-3)=f(1),a=f( ).

  ∵ >1> ,∴b>c>a.

  7.设a、b、c、d∈R,m= + ,n= ,则( )

  A.mn C.m≤n D.m≥n

  答案:D

  解析:设A(a,b),B(c,d),O(0,0),

  ∵|OA|+|OB|≥|AB|,

  ∴得m≥n.

  二、填空题(每小题5郑15分)

  8.设x>0,y>0,A= ,B= ,则A,B的大小关系是__________________.

  答案:A

  解析:A= =B.

  9.已知x2+y2=1,对谌我馐凳齲,y恒有不等式x+y-k≥0成立,则k的最大值是_______

  ______.

  答案:-

  解析:设x=cosθ,y=sinθ,k≤x+y=sinθ+cosθ= sin(θ+ ),∴k≤- .∴k的最大值为- .

  10.设{an}是等差数列,且a12+a112≤100,记S=a1+a2+…+a11则S的取值范围是______________.

  答案:[-55 ,55 ]

  解析:由 ≥( )2 ∈[-5 ,5 ].

  ∴S=a1+a2+…+a11

  =(a1+a11)+(a2+a10)+…+(a5+a7)+a6

  = (a1+a11)∈[-55 ,55 ].

  三、解答题(11—13题每小题10郑14题13郑43分)

  11.若x,y均为正数,且x+y>2.

  求证: 与 中至少有一一个小于2.

  证明:假设 与 均不小于2,即 ≥2且 ≥2,则1+y≥2x,1+x≥2y.相加得2+x+y≥2(x+y),

  推出x+y≤2,与题设x+y≥2矛盾.故假设错误.

  12.已知an= +…+ (n∈N*),求证:

  证明:an> +…+ =1+2+3+…+n= ,

  而an< [(1+2)+(2+3)+…+(n+(n+1))]= +(1+2+3+…+n)= < .

  13.若a,b,c为三角形三边,x,y,z∈R,x+y+z=0,

  求证:a2yz+bzzx+c2xy≤0.

  证明:∵z=-x-y,

  ∴a2yz+b2zx+c2xy=a2y(-x-y)+b2x(-x-y)+c2xy=-b2x2-(a2+b2-c2)yx-a2y2,

  ∴原不等式 f(x)=b2x2+(a2+b2-c2)yx+a2y2≥0. (*)

  ∵Δ=(a2+b2-c2)2-4a2b2=[(a2+b2+2ab)-c2][(a2+b2-2ab)-c2]=(a+b+c)(a+b-c)(a-b+c)(a-b-c),

  a,b,c为三角三边,∴Δ<0.

  ∴b2>0,∴f(x)>0对x∈R恒成立,即(*)express,

  ∴原不等式得证.

  14.已知:a∈R+,求证:a+ ≥ .

  证明:∵a∈R+,设t=a+4a≥2 =4,则左式=f(t)=t+ (t≥4)

  ∴f(t)=( )2+2stayt≥4上递增.

  ∴f(t)≥f(4)=4+ = 得证.

【高二数学《不等式的证明》单元test题】relevant文章:

1.不等式与不等式组单元test题

2.高二数学必修三第三单元概率test题及解答

3.高二数学选修1-1单元test题

4.不等式与不等组test题及答案

5.物理单元test题

6. In Beijing 单元test题

7.英语的单元test题

8.语文单元test题节选